Globale Erwärmung

Die Folgen der globalen Erwärmung sind zahlreiche, den Menschen und seine Umwelt betreffende, weltweite Veränderungen. Globale Erwärmung ist der beobachtete und prognostizierte Trend zu einer höheren globalen Durchschnittstemperatur mit Folgen wie steigender Meeresspiegel, schmelzende Gletscher, Verschiebung von Klimazonen, Vegetationszonen und Lebensräumen, verändertes Auftreten von Niederschlägen, stärkere oder häufigere Wetterextreme wie Überschwemmungen und Dürren, Ausbreitung von Parasiten und tropischen Krankheiten sowie mehr Umweltflüchtlinge. Massenmedien sprechen in diesem Zusammenhang verschiedentlich von einer „Klimakatastrophe“. Einige der Folgen sind im Klimawandelindex quantitativ zusammengefasst.

Während weitgehend Einigkeit über die Ursachen der globalen Erwärmung besteht (hauptsächlich menschliche Emissionen von Treibhausgasen), werden ihre Folgen intensiv erörtert. Einige Folgen sind bereits jetzt spürbar, andere werden erst für die Zukunft erwartet.

Nach einer Studie des Stockholm Resilience Centre von 2009 ist der ermittelte Grenzwert für den Kohlendioxidgehalt der Atmosphäre bereits um 11 % überschritten, so dass der anthropogene Klimawandel nach dem Artensterben das zweitgrößte globale ökologische Problem darstellt.

In welchem Ausmaß die Durchschnittstemperatur im Laufe des 21. Jahrhunderts ansteigt, hängt insbesondere von der Menge an Treibhausgasen ab, die ausgestoßen werden. Der Intergovernmental Panel on Climate Change (IPCC, Zwischenstaatlicher Ausschuss für Klimaänderungen) geht in seinem aktuellen Vierten Sachstandsberichtdavon aus, dass sich die globale Durchschnittstemperatur bis 2100 abhängig vom weiteren Anstieg der Emissionen um 1,1 bis 6,4 °C erhöht.

Steigende Durchschnittstemperaturen verschieben das Temperaturspektrum. Während extreme Kälteereignisse seltener auftreten, werden außergewöhnliche Hitzeereignisse wahrscheinlicher. Wegen der möglichen Auswirkungen auf die menschliche Sicherheit, Gesundheit, Wirtschaft und Umwelt verursacht die globale Erwärmung große Risiken, kann sich aber örtlich und regional auch positiv auswirken. Einige Veränderungen der Umwelt, die Menschen und Ökosysteme gemeinsam betreffen, sind schon wahrzunehmen. Dazu gehören der steigende Meeresspiegel, die Gletscherschmelze oder statistisch signifikante Abweichungen vom gewöhnlichen Wettergeschehen. Ob diese und weitere Folgen eintreten und wie stark sie sein werden, wird dabei recht unterschiedlich eingeschätzt. Die Folgen des Klimawandels prägen sich regional und lokal ganz unterschiedlich aus und haben individuelle Folgen. Die Klimamodelle beschreiben derzeit auf globaler Ebene die Folgen recht gut, können diese jedoch auf regionaler Ebene nur recht unsicher abschätzen.

Wie stark die Veränderungen sein werden, hängt davon ab, wie rasch der Klimawandel fortschreitet. Falls er in sehr kurzer Zeit erfolgen sollte, werden sowohl die ökonomischen Anpassungskosten als auch die Einflüsse auf die Natur voraussichtlich drastisch spürbar sein. Der Erwärmungstrend setzt absehbar nicht nur die Ökosysteme, sondern auch Milliarden Menschen enormen Belastungen, z. B. hinsichtlich der Wasserversorgung, aus.

Veränderte Jahreszeiten

Eine der bereits sichtbaren Folgen der globalen Erwärmung ist das zeitlich veränderte Auftreten der Jahreszeiten in klimatischer Hinsicht (nicht astronomischer). Der Frühling beginnt regional unterschiedlich fast zwei Wochen früher, wie beispielsweise das Wanderverhalten von Zugvögeln zeigt. Eine Untersuchung über das Verhalten von 130 Tierarten zeigte eine durchschnittliche Vorverschiebung arttypischer saisonabhängiger Verhaltensweisen um 3,2 Tage pro Jahrzehnt. Nördlich des 45. Breitengrades (etwa die Höhe von Turin in Norditalien) lebende Tiere wiesen dabei sogar eine Abweichung um 4,4 Tage je Dekade auf.

Auch Beobachtungen an Pflanzen zeigen die Erwärmung an. Im Durchschnitt beginnt die Blattentfaltung und Blüte in Europa 2,4−3,1 Tage pro Dekade, in Nordamerika 1,2−2,0 Tage pro Dekade früher.Der Jahresgang des Kohlenstoffdioxidgehalts der Atmosphäre, der auf der Nordhalbkugel im Winter sein Maximum erreicht, bestätigt ebenfalls die Verfrühung des Frühjahrs. Eine Folge für die Fauna ist die Verschiebung gewohnter Rhythmen. Für bestimmte untersuchte Vogelarten, etwa die Kohlmeise, wurde festgestellt, dass ihre Jungen verstärkt mit Nahrungsproblemen zu kämpfen hatten. Da sich der Lebenszyklus einer als Hauptnahrungsquelle dienenden Raupenart zeitlich nach vorne verlagert hatte und die Vögel mit ihrem Brutverhalten nur teilweise nachfolgen konnten, verlieren die Jungvögel eine wichtige Nahrungsgrundlage.

Desgleichen wird eine Verspätung der Herbstphasen beobachtet, sichtbar am Beginn der Laubverfärbung. Diese Veränderungen variieren jedoch stärker und sind nicht so stark wie die der Frühjahrsphasen ausgeprägt.

Eine weitere Folge ist das vorgezogene Aufbrechen von See- und Flusseis, dem das verspätete Einfrieren im Winter entspricht. Zwischen 1846 und 1995 froren Seen und Flüsse auf der Nordhalbkugel mit einer durchschnittlichen Verzögerung von 5,8 Tagen je Jahrhundert später zu, und gleichzeitig brach das Eis auf ihnen im Durchschnitt 6,5 Tage je Jahrhundert früher auf.

Die Risiken für Ökosysteme auf einer erwärmten Erde verändern sich erheblich mit dem Umfang und dem Tempo des weiteren Temperaturanstiegs. Unterhalb einer Erwärmung von 1 °C sind die Risiken vergleichsweise gering, für anfällige Ökosysteme jedoch nicht zu vernachlässigen. Zwischen 1 °C und 2 °C Erwärmung liegen signifikante und auf regionaler Ebene mitunter substanzielle Risiken vor. Eine Erwärmung oberhalb von 2 °C birgt enorme Risiken für das Aussterben zahlreicher Tier- und Pflanzenarten, deren Lebensräume nicht länger ihren Anforderungen entsprechen. Diese Arten werden verdrängt oder können aussterben, wenn sie den sich geographisch schnell verschiebenden Klimazonen nicht folgen können. Das trifft insbesondere auf die Pflanzenwelt zu, so dass die Verschiebung der Vegetationszonen deutlich langsamer nachziehen wird. Andere Arten können sich unter den veränderten Bedingungen stärker ausbreiten. Darüber hinaus drohen über 2 °C Temperaturanstieg sogar kollabierende Ökosysteme, deutlich verstärkt auftretende Hunger- und Wasserkrisen sowie weitere sozioökonomische Schäden, besonders in Entwicklungsländern.

Je größer die Übergangsgebiete (Zonoökotone) zwischen den abgrenzbaren Großlebensräumen (Zonobiome) sind, desto geringer werden die Auswirkungen klimatischer Veränderungen sein. Für die einzelnen Klimazonen werden die folgenden Veränderungen prognostiziert:

  • Polargebiet → Bedrohung der Artenvielfalt durch Schrumpfung der Tundren. Auftauen der Permafrostböden.
  • Kaltgemäßigtes Klima → Vermehrte Waldbrände, Insektenbefall und Krankheiten, Ausbreitung von Infektionskrankheiten
  • Warmgemäßigtes Klima → Vermehrte Waldbrände, Insektenbefall und Krankheiten. In den kontinentalen Mittelbreiten (Weizenanbaugebiete) Dürren im Sommer, Destabilisierung der Ökosysteme mit drastischen Folgen für die menschliche Nutzung. Demgegenüber wird Weinanbau in Großbritannien möglich und in Südeuropa können Dattelpalmen und Agaven genutzt werden.
  • Subtropen → Die dicht bevölkerten Regionen der halbtrockenen Subtropen (u.a. das Mittelmeergebiet, der Südwesten der USA, der Norden Mexikos, der Süden  Australiens und Afrikas und Teile Südamerikas) werden vermutlich noch      trockener werden.
  • Tropen → Zum einen dürften die halbtrockenen Tropen (z.B. die Savannen des Sahel) von zunehmenden Niederschlägen profitieren, sodass der Ackerbau mehr Erträge bringt. Die feuchten Zonen der Tropen, die bereits weitgehend      entwaldet sind, werden hingegen durch zunehmende Trockenheit und      Waldbrände weiter ihre Artenvielfalt einbüßen. Intakter Regenwald hingegen      wirkt ausgleichend auf den Wasserhaushalt und kommt mit steigenden      Temperaturen relativ gut klar.

Eine 2007 in den Proceedings of the National Academy of Sciences (PNAS) veröffentlichte Modellstudie deutet drastische Folgen für Lebewesen in allen Klimazonen der Welt unter den Bedingungen der Erderwärmung an. Aus biologischer Sicht am stärksten betroffen werden demnach wahrscheinlich Tropengebiete sein, weil sie historisch gesehen bislang den geringsten Schwankungen ausgesetzt waren. Ihre Anpassungsfähigkeit wird deshalb als äußerst gering eingeschätzt. Bis 2100 droht auf bis zu 39 % der globalen Landflächen das Entstehen völlig neuartiger Klimate, vor allem in den Tropen und Subtropen, gefolgt von den Polargebieten und Gebirgen. Auf bis zu 48 % der Landflächen könnten die bisherigen Klimate verschwinden und durch andere ersetzt werden.

Pro Grad Celsius ist mit einer Verschiebung der Klimazonen um 100 – 200 km nach Norden zu rechnen. Tiere wandern mit steigenden Temperaturen zunehmend polwärts. Eine Untersuchung an 1.700 Spezies besagt, dass diese sich um durchschnittlich 6,1 km pro Jahrzehnt den Polen nähern bzw. sich mit 6,1 m pro Dekade in höhere Gebirgslagen zurückziehen. Für Westeuropa fand eine andere Studie für den Zeitraum von 1905 bis 2005 eine durchschnittliche Aufwärtswanderung von 29 m pro Jahrzehnt für 171 Pflanzenarten vor.Besonders betroffen sind deshalb Spezies, die in Polargebieten oder auf Bergen leben und keine oder nur begrenzte Ausweichmöglichkeiten besitzen. Eine Studie, die 1.103 Pflanzen- und Tierarten untersuchte, die 20 % der Erdoberfläche abdecken, ergab, dass bei einer geringen Erwärmung von 0,8 bis 1,7 °C bis 2050 etwa 18 % der untersuchten Spezies aussterben würden. Bei einer mittleren Erwärmung von 1,8 bis 2,0 °C im gleichen Zeitraum würden etwa 24 % aller Arten aussterben und bei einer hohen Erwärmung von über 2 °C wären es hiernach sogar ca. 35 %.

Die häufig auf Bewahrung eines Zustandes gerichteten Strategien für Naturschutzgebiete müssen überdacht und den veränderten Bedingungen angepasst werden. Der klimatische Wandel kann die bisherigen Schutzziele vieler Gebiete zunichtemachen.

Erhöhung des Meeresspiegels 

Der IPCC rechnete in seinem Bericht von 2007 mit einem Anstieg von 18 bis 59 Zentimeter bis zum Jahr 2095; die zurzeit beobachtete Rate liegt am oberen Rand dieses Szenarios. Der IPCC-Bericht berücksichtigt den möglichen Beitrag schmelzenden Kontinentaleises kaum, da dieser mit den heutigen Computermodellen noch nicht genau genug abgeschätzt werden kann. Allerdings deuten neuere Untersuchungen über den Zusammenhang zwischen Temperaturen und Anstieg des Meeresspiegels an, dass der Anstieg bis Ende des Jahrhunderts eher einen Meter betragen könnte; und auch das überraschend starke Abtauen des arktischen und antarktischen Eises deutet auf einen solchen Anstieg hin. Im März 2006 veröffentlichte die Wissenschaftszeitschrift Science eine Studie, nach der der Anstieg auch mehrere Meter betragen könne. Die Autoren der Studie und einige weitere Gletscherkundler fürchten, dass das Festlandeis wesentlich schneller verschwinden könnte als bisher gedacht, da sich durch Schmelzwasser eine Wasserschicht zwischen Boden und Eis bilden könnte, die große Eisflächen einfach ins Meer rutschen lässt. Wenn das gesamte Eis auf Grönland tauen würde, würde es den Meeresspiegel um 7 Meter ansteigen lassen; das Eis aus dem West-Antarktischen Eisschild um 6 Meter; das gesamte Eis in der Antarktis reicht gar für 65 Meter. Unabhängig vom Schmelzen des Eises wird der Anstieg des Meeresspiegels noch jahrhundertelang weitergehen, nachdem der Klimawandel aufgehört hat, da die thermische Ausdehnung ein langsamer Vorgang ist. Ein Vergleich zwischen Temperatur und Meeresspiegel in der jüngeren Erdgeschichte lässt ahnen, dass die Prognosen bis zum Jahr 2100 nur ein Anfang sind.

Temperatur der Erde und Meeresspiegel in der Erdgeschichte: Der  Anstieg bis 2100 ist nur der Beginn eines langfristig viel stärkeren  Anstiegs. Abb. nach >> Rahmstorf und Richardson 2007, Seite 125.

Temperatur der Erde und Meeresspiegel in der Erdgeschichte: Der Anstieg bis 2100 ist nur der Beginn eines langfristig viel stärkeren Anstiegs. Abb. nach Rahmstorf und Richardson 2007, Seite 125.

 

 

 

 

 

 

 

 

 

Veränderte Niederschlagsmengen: Dürren und Überschwemmungen

Die globale Erwärmung führt zu einer veränderten Verteilung und Menge des Regens: Niederschläge fallen in anderen Intervallen als vorher üblich oder verteilen sich neu auf die Jahreszeiten. Auch niederschlagsbedingte Wetterextreme wie Überschwemmungen oder Dürren können auf einer erwärmten Erde zu- oder abnehmen. Zu beachten ist, dass ein einzelnes Ereignis nie direkt auf die globale Erwärmung zurückgeführt werden kann. Unter den Bedingungen des Klimawandels verändert sich aber die Wahrscheinlichkeit für das Auftreten solcher Ereignisse.

Bei der Kartierung großflächiger Trends der einfallenden Niederschlagsmenge seit 1900 zeigen sich regional deutliche Unterschiede. Mehr Niederschlag entfiel besonders auf Kanada, Nordeuropa, Westindien und Ostaustralien. Rückgänge von bis zu 50 % wurden besonders in West- und Ostafrika und im Westen Lateinamerikas gemessen. Im Vergleich zu 1980 wird nach einer Modellstudie bis 2050 der Osten Afrikas einen weiteren Rückgang erfahren, ebenso Mittelamerika und eine große Region, die sich von Neuseeland über Australien und Neuguinea bis nach Japan erstreckt. Ein deutlicher Anstieg wird für den Osten Grönlands, für Teile Lateinamerikas und Westafrikas sowie besonders über dem Pazifischen Ozean erwartet.

Waldbrände           

Nicht von Menschen verursachte Waldbrände sind natürliche Vorgänge, die unregelmäßig auftreten und wichtige Funktionen im Ökosystem Wald übernehmen. Durch die Art der Waldnutzung und die Unterdrückung von wilden Feuern während des 19. und 20. Jahrhunderts ist in vielen Wäldern besonders der USA die Menge an Holz-Biomasse im Wald teilweise um ein Vielfaches über den natürlicherweise vorkommenden Wert gestiegen. Dies führt dann beim Entstehen eines Brandes zu schwereren und unkontrollierbareren Feuern, nicht selten mit Todesopfern und hohen Sachschäden. Neben dieser Veränderung durch Landnutzung trägt auch die globale Erwärmung wahrscheinlich zu verstärktem Auftreten von Waldbränden bei. Eine Studie über die westliche USA kommt zu dem Schluss, dass es in der Mitte der 1980er Jahre zu einem sprunghaften Anstieg der Anzahl, Stärke und Dauer von Waldbränden kam. Dieser Anstieg geschah in durch Waldnutzung relativ unberührten Gebieten, und er hängt eng mit beobachtbaren steigenden Frühlings- und Sommertemperaturen und einer immer früher einsetzenden Schneeschmelze zusammen. Zwar sei es auch möglich, dass ein noch unbekannter natürlicher Zyklus ursächlich für diese Effekte sei, doch passe das Muster der Veränderungen genau in das durch Klimamodelle vorhergesagte Verhalten.

Für die Zukunft wird eine weitere Verschiebung der Temperaturen hin zu diesem anscheinend waldbrandfördernden Klima erwartet. Da dies sogar unberührte Waldgebiete gefährdet, sind künstlich mit Holz „angefüllte“ Wälder besonders starken Risiken ausgesetzt. In Gegenden mit einer erwarteten Zunahme der Niederschlagstage hingegen dürften sich bei ansonsten unveränderten Bedingungen weniger schwere Waldbrände ereignen.

Artenvielfalt

Zwischen den globalen Temperaturen und der Biodiversität gibt es einen langfristigen Zusammenhang, der sich anhand von Fossilienfunden bis vor 520 Millionen Jahren feststellen lässt. In Zeiten höherer Temperaturen war die Artenvielfalt sowohl im Meer als auch am Land geringer als in Zeiten niedrigerer Temperaturen. Dies deutet darauf hin, dass sich die globale Erwärmung negativ auf die Biodiversität auswirken könnte, aber die ursächlichen Zusammenhänge sind noch unklar.

Laut dem vom Arktischen Rat in Auftrag gegebenen Arctic Climate Impact Assessment wird in zahlreichen polaren Gebieten die Artenvielfalt zunehmen, weil im Zuge der Erwärmung neue Spezies in die Arktis einwandern werden und die Gesamtzahl der Arten und deren Produktivität zunehmen wird.

Rückkopplungen

Einige Wirkungen der globalen Erwärmung erzeugen wiederum neue Einflüsse auf den Umfang der globalen Erwärmung, sie wirken als Rückkopplungen im globalen Klimasystem. Einige Rückkopplungen sind negativ, d. h., die Erwärmung zieht abkühlende Effekte nach sich. Andere sind positiv, so dass sich die Erwärmung von selbst verstärkt.

Biomasse

Wälder könnten von dem gestiegenen Anteil an Kohlendioxid in der Atmosphäre profitieren, doch der Nettoeffekt auf die gesamte Biomasse ist unsicher.

Bedingt durch höhere Temperaturen sowie die Düngewirkung von CO2 rechnen manche Klimamodelle mit einem erhöhten Pflanzenwachstum (gemessen an der Biomasse). Dies wird auch durch Beobachtungen der Paläoklimatologie gestützt, die von einer Abhängigkeit zwischen Biomasse und Temperatur ausgeht. Diese verbesserten Wachstumsmöglichkeiten für Pflanzen führen zu einem Rückkopplungseffekt: Die Neubildung von Biomasse stellt in den Klimamodellen eine CO2-Senke dar. Die terrestrische Biosphäre alleine absorbiert ca. 20-30 % der anthropogenen CO2 Emissionen und führt dazu, dass es sich langsamer in der Atmosphäre anreichert.

Für tropische Wälder wurde in einer Langzeitstudie anhand von zwei Gebieten in Panama und Malaysia nachgewiesen, dass eine erhöhte Temperatur zu einer Verringerung des Zuwachses an Biomasse führt, und zwar sowohl insgesamt als auch bei der Mehrzahl der einzelnen Arten.

Eine Erhöhung des Pflanzenwachstums auf der Nordhalbkugel konnte im Zeitraum von 1982–1991 durch Satellitenbeobachtung festgestellt werden. Dieser Effekt tritt regional sehr unterschiedlich auf, da auch die Verfügbarkeit von Wasser Voraussetzung für Pflanzenwachstum ist und die Regenverteilung sich als Folge des Klimawandels ändern kann. Neuere Studien deuten diesbezüglich an, dass es zu keinem Nettozuwachs an Biomasse kommt, da klimabedingt heißere Sommer und Wassermangel anscheinend das Pflanzenwachstum hemmen.

Versuche mit Gräsern in einer künstlich mit CO2-angereicherten Umgebung ergaben keine signifikant erhöhte Aufnahme von Stickstoff durch die Pflanzen. Experimente an künstlich „gedüngten“ Wäldern ergaben zwar ein gesteigertes Wachstum, zeigten aber auch, dass eine mögliche Mehraufnahme organischen Materials durch die Bäume von einer ebenfalls erhöhten Bodenatmung wieder zunichtegemacht werden könnte, so dass Wälder trotz zusätzlicher CO2-Düngung nicht als verstärkte Kohlenstoffsenke fungieren würden.

 

Hinterlasse eine Antwort